Problem: Find K Pairs with Smallest Sums

Posted by Marcy on February 18, 2015

Question

You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.

Define a pair (u,v) which consists of one element from the first array and one element from the second array.

Find the k pairs (u1,v1),(u2,v2) …(uk,vk) with the smallest sums.

Example 1:

Given nums1 = [1,7,11], nums2 = [2,4,6],  k = 3

Return: [1,2],[1,4],[1,6]

The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

Example 2:

Given nums1 = [1,1,2], nums2 = [1,2,3],  k = 2

Return: [1,1],[1,1]

The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

Example 3:

Given nums1 = [1,2], nums2 = [3],  k = 3

Return: [1,3],[2,3]

All possible pairs are returned from the sequence:
[1,3],[2,3]

Solution

Basic idea: Use min heap to keep track on next minimum pair sum, and we only need to maintain K possible candidates in the data structure.

Some observations: For every numbers in nums1, its best partner(yields min sum) always strats from nums2[0] since arrays are all sorted; And for a specific number in nums1, its next candidate sould be [this specific number] + nums2[current_associated_index + 1], unless out of boundary;)

Code

class Solution {
    public List<int[]> kSmallestPairs(int[] nums1, int[] nums2, int k) {
        PriorityQueue<int[]> pq = new PriorityQueue<>((p1,p2)->p1[0]+p1[1]-p2[0]-p2[1]);
        List<int[]> res = new ArrayList();
        if(nums2.length == 0 || nums1.length == 0 || k == 0) return res;
        for(int i=0; i<k && i<nums1.length; i++) pq.add(new int[]{nums1[i], nums2[0], 0});
        while(k-- > 0 && !pq.isEmpty()) {
            int[] cur = pq.poll();
            res.add(new int[]{cur[0], cur[1]});
            if(cur[2] == nums2.length - 1) continue;
            int nextIdx = cur[2]+1;
            pq.add(new int[]{cur[0], nums2[nextIdx], nextIdx});
        }
        return res;
    }
}

Performance

O(kLog(k))