Problem: Maximum Product Subarray

Posted by Marcy on February 18, 2015

Question

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.

Solution

TODO

Code

class Solution {
    public int maxProduct(int[] nums) {
        if(nums.length == 0) return 0;
        if(nums.length == 1) return nums[0];

        int[] maxProd = new int[nums.length+1];
        int[] maxNegtiveProd = new int[nums.length+1];

        int max = nums[0];
        for(int i=0; i<nums.length; i++) {
            if(nums[i]>=0) {
                maxProd[i+1] = (maxProd[i] > 0 ? maxProd[i] : 1) * nums[i];
                maxNegtiveProd[i+1] = maxNegtiveProd[i] * nums[i];
            }
            else {
                maxProd[i+1] = maxNegtiveProd[i] * nums[i];
                maxNegtiveProd[i+1] = (maxProd[i] > 0 ? maxProd[i] : 1) * nums[i];
            }

            // maxProd must have a valid value after two numbers.
            // so we could just compare max and maxProd[i+1]
            max = Math.max(max, maxProd[i+1]);
        }

        return max;
    }
}

Optimization

class Solution {
    public int maxProduct(int[] nums) {
        if(nums.length == 1) return nums[0];
        int[] pos = new int[nums.length];
        int[] neg = new int[nums.length];
        int max = nums[0];
        if(nums[0] >= 0) pos[0] = nums[0];
        else neg[0] = nums[0];
        for(int i=1; i<nums.length; i++) {
            if(nums[i] == 0) neg[i] = pos[i] = 0;
            else if(nums[i] > 0) {
                if(pos[i-1] > 0) pos[i] = nums[i] * pos[i-1];
                else if(pos[i-1] == 0) pos[i] = nums[i];
                if(neg[i-1] < 0) neg[i] = nums[i] * neg[i-1];
            }
            else if(nums[i] < 0) {
                if(pos[i-1] > 0) neg[i] = nums[i] * pos[i-1];
                else if(pos[i-1] == 0) neg[i] = nums[i];
                if(neg[i-1] < 0) pos[i] = nums[i] * neg[i-1];
            }
            max = Math.max(pos[i], max);
        }
        return max;
    }
}

Performance

TODO