Problem: Number of Boomerangs

Posted by Marcy on February 18, 2015

Question

Given n points in the plane that are all pairwise distinct, a “boomerang” is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).

Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).

Example:

Input:
[[0,0],[1,0],[2,0]]

Output:
2

Explanation:
The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]

Solution

Use HashMap to keep track of points with same distance to a point.

Code

class Solution {
    public int numberOfBoomerangs(int[][] points) {
        int res = 0;
        Map<Integer, Integer> map = new HashMap<>();
        for(int i=0; i<points.length; i++) {
            for(int j=0; j<points.length; j++) {
                if(i==j) continue;
                int d = distance(points[i], points[j]);
                map.put(d, map.getOrDefault(d, 0)+1);
            }
            for(int val: map.values()) {
                res +=  val*(val-1);
            }
            map.clear();
        }
        return res;
    }

    public int distance(int[] p1, int[] p2) {
        int d1 = p1[0]-p2[0];
        int d2 = p1[1]-p2[1];
        return d1*d1 + d2*d2;
    }
}

Performance

O(n)