Problem: Frog Jump

Posted by Marcy on February 18, 2015

Question

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

Solution

Use dynamic programming

Code

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        if(triangle.size() == 0) return 0;
        List<List<Integer>> minCache = new ArrayList<>();
        minCache.add(new ArrayList<>(triangle.get(0)));
        for(int i=1; i<triangle.size(); i++) {
            List<Integer> prevLayer = minCache.get(i-1);
            List<Integer> curLayer = new ArrayList<>();
            minCache.add(curLayer);
            List<Integer> triLayer = triangle.get(i);
            for(int j=0; j<triLayer.size(); j++) {
                int val = triLayer.get(j);
                int choice = Integer.MAX_VALUE;
                if(j-1 >= 0) choice = Math.min(choice, prevLayer.get(j-1) + val);
                if(j < prevLayer.size()) choice = Math.min(choice, prevLayer.get(j) + val);
                curLayer.add(choice);
            }
        }
        
        int min = Integer.MAX_VALUE;
        List<Integer> lastLayer = minCache.get(minCache.size()-1);
        for(int i=0; i<lastLayer.size(); i++) {
            min = Math.min(lastLayer.get(i), min);
        }
        
        return min;
    }
}

Performance

O(N)